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Abstract. This paper introduces a method for representing, communicating and 
fusing distributed, noisy and partial observations of an object by multiple robots. 
This technique describes how to model sensors and the information they acquire. 
Each sensor is  considered as a team member making decisions locally to achieve a 
local estimate. The local estimates of a robot are then fused with the other robots 
local estimates to achieve a global fusion estimate of the objects surrounding the 
team, creating a much more reliable and accurate world model. This method was 
implemented and tested in RoboCup Middle Size League robots. 
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Introduction 
 
Individual robots typically obtain partial and noisy data from the surrounding environment. 
This data is often erroneous, leading to miscalculations and wrong behaviors, and to the 
conclusion that there are fundamental limitations on the reconstruction of environment 
descriptions using only a single source of sensor information. If robot systems are ever to 
achieve a degree of intelligence and autonomy, they must be capable of using many 
different sources of sensory information in an active and dynamic manner.  
In dynamic environments, information previously collected about currently unobservable 
parts of the environment can quickly become inaccurate. Sharing information among robots 
increases the effective instantaneous visibility of the environment, allowing for more 
accurate modeling and more appropriate response. Information collected from multiple 
points of view can provide reduced uncertainty, improved accuracy and increased tolerance 
to single point failures in estimating the location of observed objects. By combining 
information from many different sources, it would be possible to reduce the uncertainty and 
ambiguity inherent in making decisions based only in a single information source. Our goal 
is to apply the sensor fusion method introduced by Durrant-Whyte [1] to a team of real 
robots. Durrant-Whyte’s method is summarized in Sections 2 and 3. In Section 4 we 
discuss our experimental setup and results obtained with real soccer robots. Finally, in 
Section 5 some conclusions of this work are drawn. 
 
 
1. Background and Related Work 
 
Even though one can find related applications in other areas, we refer only to related work 
on the specific application described in this paper: soccer robots. Most soccer robot team 
approaches use vision and/or sonar to localize the robots and vision to locate objects in the 
environment. Some teams share information for planning and dynamic role modeling with 
shared data [9]. Other distributed sensing approaches include merging independent gridcell 
occupancy probabilities measured by multiple robots [2], others use Kalman filters to track 
objects [3], or a combination of Kalman filters with Markov localization [6]. Others yet use 
a probabilistic state estimator [7]. The task addressed in [1] is distinct from the others 



described above, since the author focuses on fusing multiple simultaneous observations of 
the same object from distributed vantage points (as opposed to observations from the same 
vantage point over multiple instants in time). Our goal is to provide more accurate 
instantaneous estimations of the location of dynamic objects that are simultaneously visible 
by multiple robots, without relying on historical data. 
 
 
2. Fusing Gaussing Distributions  
 
In order to cooperatively use sensor fusion, team members must exchange sensor 
information. This information exchange provides a basis through which individual sensors 
can cooperate with each other, resolve conflicts or disagreements, and/or complement each 
other’s view of the environment. Our goal is to analyze the efficiency of a previously 
introduced sensor fusion method [1], where uncertainties in the sensor state and observation 
are modeled by Gaussian distributions. This approach takes in to account the last known 
position of the object and tests if the readings obtained from several sensors are close 
enough, using the Mahalanobis distance, in order to fuse them. When this test fails, no 
fusion is made and the sensor reading which has less variance (more confidence) is chosen. 
The conditions under which this test fails or succeeds are presented in Section 3.  The 
remainder of this section provides the necessary mathematical background to understand 
how the Gaussian distributions are fused.  
Durrant-Whyte[1] considers a sequence of observations },...,{ 1 n

P zzz = , of an environment 
feature Pp ∈ , which are assumed to derive from a sensor modeled by a contaminated 
Gaussian Density, so that the thi  observation is given by: 
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where 1.005.0 << ε  and 12
ii Λ>>Λ . 

It is well known that if the prior distribution ( )pπ  and the conditional observation 
distribution ( )pzf |  are modeled as independent Gaussian random vectors ( )0,ˆ~ ΛpNp  
and ( )11 ,ˆ~ ΛpNz  respectively, then the posterior distribution ( )zp |π  after taking a single 
observation 1z  can be derived using Bayes’ law and is also jointly Gaussian with mean 
vector 
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This method can be extended to n  independent observations, as explained in [1]. 
 
 
3. The Multi-Bayesian Team 
 
In the Multi-Bayesian system, each team member individual utility function is given by the 
posterior likelihood for each observation iz : 
 

( )( ) ( ) ( )iiiii pNzppzpu δπδ ,ˆ|, ≈==                     2,1=i              (4) 

 



A sensor or team member will be considered rational if, for each observation iz  of some 
prior feature ( ) Pz ii ∈δ , it chooses the estimate that maximizes its individual utility 

( )( ) ℜ∈pzu iii ,δ . In this sense, utility is just a metric for constructing a complete lattice of 
decisions, allowing any two decisions to be compared in a common framework. For a two-
member team, the team utility function is given by the joint posterior likelihood: 

 
( )( ) ( ) ( ) ( )22112121 ||,|,, zpfzpfzzpFpzzpU ==   .                      (5) 

 
The advantage of considering the team problem in this framework is that both individual 
and team utilities are normalized so that comparisons can be performed easily, supplying a 
simple and transparent interpretation to the group rationality problem. The team itself will 
be considered group rational if together the team members choose to estimate Pp ∈  
(environment feature), which maximizes the joint posterior density. 
 

( ) ( ) ( )221121 ||maxarg,|maxarg zpfzpfzzpFp == .                    (6) 

 
There are two possible results for (6) 
 

• ( )21,| zzpF  has a unique mode equal to the estimate p ; 

 
Fig. 1 - Two Bayesian observers with joint posterior likelihood indicating agreement 

 
• ( )21,| zzpF  is bimodal and no unique group rational consensus estimate exists. 

 
Fig. 2 - Two Bayesian observers with joint posterior likelihood indicating disagreement 

 
If ( )21 ,| zzpF  has a unique mode, as displayed in Fig. 1, it will satisfy: 

 
( ) ( )i21 z|pmax,z|pmax ifzF ≥                    2,1=i             (7) 

 
Conversely, if ( )21 ,| zzpF is bimodal, as displayed in Fig. 2, then: 

 



( ) ( )21i ,z|pmax z|pmax zFf i ≥                    2,1=i             (8) 

 
A rational team member will maximize utility by choosing to either agree or disagree with 
the team consensus. If a team member satisfies (8), then it will not cooperate with the team 
estimate. Thus the decision made by a team member based of its observations iz  is: 

 
( ) ( ) ( ){ }21 ,|,|maxarg zzpFzpfzp iii == δ           2,1=i            (9) 

 
Whether or not the individual team members will arrive at a consensus, the team estimate 
will depend on some measure of how much they disagree || 21 zz − . If 1z  and 2z  are close 
enough, then the posterior density ( )21 ,| zzpF  will be unimodal and satisfy (7), with the 
consensus estimate given by (6). As || 21 zz −  increases, ( )21 ,| zzpF  becomes flatter and 
eventually bimodal. At this point, the joint density will satisfy (8), and no consensus team 
decision will be reached. To find the point at which this space is no longer convex and 
disagreement occurs, one must ensure that the second derivative of the 
function ( )21 ,| zzpF is positive. Differentiating leads to: 
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For this to be positive and hence ( )21 ,| zzpF to be convex, we are required to find a 
consensus over the feature of the environment p  which satisfies 
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Notice that (11), is a normalized weighted sum, a scalar equivalent to the Kalman gain 
matrix. The consensus p  which maximizes F  is therefore given by 
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Replacing (12) into (11), we obtain 
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where 112 ≤D . The disagreement measure ( )2112 , zzD is called the Mahalanobis distance. 
 
 
4. Experimental Test and Results 
 
4.1 Experimental Setup 
 
An experiment was conducted on the ISocRob soccer team of RoboCup Middle Size 
League [8]. The software architecture of the robots is composed by several micro-agents 
that acquire and process sensor data, so a new micro-agent was created to handle the sensor 
fusion. The data is acquired by two micro-agents that handle each of the two on-board 
cameras, here designated as the up camera and the front camera. This data is then processed 



and sent to the team blackboard, a distributed memory that stores all the relevant 
information about the robot status, micro-agents behaviors and acquired sensor data. The up 
camera produces a o360  view of part of the field, while the front camera produces an image 
of what is in front of the robot. Since both players and ball are moving, their positions are 
dynamically evolving during a game. In order to deal with this, we had to model the 
observed data in both cameras to reflect the uncertainty of the objects position, based on its 
distance to the player who was collecting the data. This was done by placing the ball in pre-
defined areas around the player and calculating the observed variance of the ball position. 
After several observations, an observation model was built for the cameras. The goal is to 
obtain a better estimate for all player positions and the ball position. The results were 
obtained and visualized on a game interface client, which allowed the visualization of the 
location of the relevant objects as determined by the sensor fusion method. 
Using Durrant-Whyte’s fusion algorithm, the decision process to determine the ball 
position is made by first determining if both observed ball positions from the two cameras 
can be merged locally through the Mahalanobis  distance. This is accomplished by putting a 
time stamp in each camera observation, and using the time difference between stamps to 
modify the variance of each observation, in order to synchronize the fusion. When this 
synchronization is possible, the ball position will be the result of the fusion; otherwise, the 
observation with the smallest variance is chosen, meaning that the observation with the  
highest confidence is used to determine the ball position. After the local ball position 
estimate has been determined, the estimation of the global ball position is attempted, by 
fusing all local estimates of each robot, to get a global sensor fusion, as shown in Figure 3. 
Each player acts as a sensor, taking observations from its two cameras, modifying the 
variance based on the difference of the observation time stamps, fusing and reporting them 
to the other team members. 
 

 
Fig. 3 – Diagram of the Local and Global Sensor Fusion 

 
4.2 Experimental Results 
 
To test the local sensor fusion of both cameras of the robot, the ball was positioned on the 
field in different positions along a straight line, making several observations with both 
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cameras.  Figure 4 shows both the observations made by the two cameras, the real position 
of the ball and the estimated position, calculated by Durrant-Whyte’s method. The result of 
the fusion improved the estimation of the ball position, converging to the real position of 
the ball. It can be seen from the plot in the figure that the front camera provides better 
estimates for distances below two meters, while the up camera gives better results for long 
distances. Fusing the information from the two cameras, the estimated position is much 
closer to the real position and has reduced estimate noise, improving the certainty of the 
estimation.  
 

 
Fig.4 - Comparison of the Ball Trajectory with the Fusion Estimate and Observed Data along a 
straight line. 

 
To test the global sensor fusion, three robots were placed on the field. We then ran the 
algorithm in each robot with only local sensor fusion working (Figure 5) and then with both 
local and global sensor fusion working (Figure 6). Each robot has a measure of quality 
(local fusion variance) of its local sensor fusion, using it to decide who has priority in the 
global sensor fusion. The robot with the best measure of quality has priority over the others. 
 

       
Fig. 5 – Local Sensor Fusion Enabled and       Fig. 6 – Both Local Sensor Fusion and Global 
Global Sensor Fusion Disabled.              Sensor Fusion Enabled. 

 
As seen in Figures 5 and 6, the global sensor fusion improved the ball estimate, and since 
the new ball position information is shared by all robots, a more robust world model results, 
allowing the team robots to share information and create more complex and interesting 
actions. One of these actions is illustrated in Figure 7 where, although one of the robots 
cannot see the ball with its own cameras, because it is too far away, it knows where the ball 
is, since all robots share the same world information. This is the result of communicating 
all the features that each robot extracts from the environment to all the other teammates, 



and then using sensor fusion to validate those observations. Testing the agreement among 
all the team sensors eliminates sporadic and erroneous observations. In Figure 8, the robot 
in the bottom part of the field cannot see the ball, so it gets the ball position from the global 
fusion of the other robot observations. Since the other two robots disagree with each other, 
the global fusion becomes equal to the local fusion of the robot with the best variance 
among the two. 

 

       
Fig. 7 – Leftmost robot receives ball position       Fig. 8 – Bottom robot receives ball position from 
information of the other two.        top robot, while top and leftmost robot disagree. 

 
In Figure 9 we see two robots showing disagreement. This happened in this case because 
there were two balls in the field and each robot was detecting a ball in different positions. 
Although each robot has its own local sensor fusion estimate, they cannot reach an 
agreement about the global sensor fusion. When this happens, the robot makes its global 
sensor fusion estimate equal to its local sensor fusion estimate. In Figure 10 we see the 
same two robots showing agreement. Although they have slightly different local sensor 
fusion estimates, they have the same global sensor fusion estimate of the ball, which is a 
result of the fusion of their local estimates. 
 

       
Fig. 9 – Two robots showing disagreement.      Fig. 10 – Two robots showing agreement. 

 
Before each local fusion is made, each sensor observation and the local sensor estimate at 
the previous step are fused, with an increase in the variance of the latter, to reflect the time 
that has passed since the fusion was made. This helps to validate the new observation, 
because if fusion is successful then the new observation is a valid one and we are predicting 
the same feature as in the previous fusion operation. Otherwise, this means that the latest 
observation was probably a bad one and that we could not predict the feature evolution. 
 
 
5. Conclusions  
 
As shown in this work, our modifications and application of Durrant-Whyte’s approach is 
very effective to improve the position estimation of relevant world features, because it 
considers the previous ball position in the estimation of its new value, and uses a measure 



of the quality of the observations and fusions to make decisions, thus eliminating bad 
observations and producing a more robust world model.  
Also, if sensor outputs vary to such degree that the Mahalanobis distance increases and 
becomes greater than one, then we have two disagreeing sensors. In this case, our method 
chooses the sensor output with the best quality (smallest variance). This will eliminate any 
erroneous and spurious data that might appear, giving a much more accurate view of the 
world and of its state. These are the reasons why we have chosen to use this method for real 
robots. 
Using multi-sensor Bayesian techniques for the team decision problem, techniques for 
control and coordination of the information acquisition were developed and implemented in 
each individual team member. These techniques will allow more frequent cooperation 
between team members, so as to solve conflict situations and achieve a team consensus 
faster. 
Although in this case study we were only concerned with the ball position, this method can 
be extended to any other feature that the robots can extract from the environment., 
particularly to improve the estimation of teammate locations. This is the work we are 
currently carrying out. 
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