STOCHASTIC DISCRETE EVENT MODEL OF
A MULTI-ROBOT TEAM PLAYING AN
ADVERSARIAL GAME

Bruno Damas *** Pedro Lima *

* Instituto de Sistemas e Robdtica
Instituto Superior Técnico
Av. Rovisco Pais, 1 — 1049-001 Lisboa, Portugal
Email: {bdamas,pal} @isr.ist.utl.pt
** Escola Superior de Tecnologia
Instituto Politécnico de Setubal
Campus do IPS, Estefanilha, 2914-508 Setibal, Portugal

Abstract: This paper introduces a method to model multi-robot teams using
stochastic discrete event system techniques. The environment state space and
robot behaviours are discretised and modelled by modular finite state automata
(FSA). Then, all the FSA are composed to obtain the complete model of the team
situated in its environment. Controllable and uncontrollable events are identified.
Exponential distributions are assigned to the interevent times for uncontrollable
events and stochastic dynamic programming is applied to the optimal selection of
the controllable events. The method is illustrated by its application to a robotic
football game. Simulation results are presented.

Keywords: Multi-Robot Systems, Discrete Event Systems, Dynamic Programming

1. INTRODUCTION

Finding the optimal sequence of actions a robotic
agent should carry out in order to completely fulfil
a given set of objectives, such as minimising a
given cost function, or equivalently maximising an
utility function, is a problem often not analytically
solvable, due to partial and uncertain knowledge
about the consequence of the robot actions over
the surrounding environment. However, one can
use an approximate world model, capturing its
main features, and include uncertainty in such
a model. In this paper, stochastic discrete event
theory (Cassandras and Lafortune, 1999) is used
for modelling and optimal decision making con-
cerning a multi-robot team playing against an
opponent team. The method is illustrated by an
application to robotic football. This is a domain
where probability distributions of event occur-

rences are strongly dependent on the continuous-
valued state of the players and ball field posi-
tions and are not, in most cases, stationary with
respect to time. Even so, the optimal solution
for a given discretisation of this continuous state
space, obtained by the use of an exponential timed
stochastic model, may serve as a good guideline
to design the agent decision scheme. Not many
applications of discrete event systems to modelling
and planning of robotic tasks have been described
in the literature, and typically refer to the tempo-
ral specification, verification and code generation
(Montano et al., 2000), or coordination of sensing
and control strategies (Koseckd, 1996), to name
just a few. The work described here is rooted on
previous work on the quantitative modelling of
robotic tasks using Petri nets (check (Milutinovic
and Lima, 2002) and the references therein).

2. FINITE STATE AUTOMATON MODEL

The robotic football game considered here consists
of two players against two opponents. The field is
divided in three distinct zones: My Side, Their
Side and Their Goal. Each player can dribble,
approach, face, shoot, cross, clear and move the
ball around the field. Additionally, each player
can have the ball under its control and may or
may not see it at a given moment. The discretised
environment states and the players behaviours are
the discrete states of the finite state automaton
(FSA) model of the game. Table 1 shows all the
considered events, where pi means player ¢ and
oppj means opponent j. More players could be
considered, of course, and the field could also
be discretised into a greater number of zones.
Nevertheless, the options taken seem to be suf-
ficient to illustrate the methods presented in this
paper, while maintaining the resulting FSA small
enough.

The model is mainly focused on the offensive ca-
pabilities of a football team — defensive abilities
could certainly be included in this study, but the
consequent automaton dimension would extent far
beyond the scope of this work. Opponent capabil-
ities are also extremely reduced in order to keep
the model limited to a maximum number of a few
thousand of different states. Basically, opponents
just try to bring the ball to a field position as far
as possible of their own goal. They are always in
the field zone where the ball is currently standing,
trying to get or to steal the ball when the ball
is not on their team possession. The opponents
model, despite its obvious simplicity (e.g., it does
not take into account a possible score by the op-
ponent team) is very challenging from the player
point of view, as each opponent acts coherently
in order to avoid the ball being near its goal. In
fact, such opponents are harder to beat than other
typical opponents, since they were designed to be
near the ball all the time, while the considered
team players are occasionally in a different field
zone — sometimes even not being able to see the
ball. Nonetheless, one must keep in mind that the
methodology introduced here can be readily ex-
tended to more elaborated models of the football
game.

From a practical standpoint, there is only a non-
deterministic shot event: its division into shot_b,
shot_m and shot_g (bad, medium or good shot)
will be explained in Section 3. Note also that
events see_ball and dont_see_ball are also split
into three distinct events. This allows the use
of context dependent variable transition rates, as
explained later in this section.

Given a set of environment states, player be-
haviours and events, it is not a trivial task to

Controllable events

Uncontrollable events

stop_p?
move_my_side_p3
move_their_side_pi
move_their_goal_pi
get_ball_p1
face_ball_pi
shot_b_pi

shot_m_pi

shot_g_pt

center_ps

clear_pt
dribble_my_side_p3
dribble_their_side_p?
dribble_their_goal_p1

see_balll_pi
see_ball2_p1
see_ball3_pi
dont_see_balll_pi
dont_see_ball2_pi
dont_see_ball3_pi
got_ball_pi
lost_ball_ps
stole_ball_pi
approached_ball_p:
reached_my _side_pi
reached_their_side_ps
reached_their_goal_p1
dribbled_my _side_pi

dribbled_their_side_pi
dribbled_their_goal_pi
dribbled_my_side_oppj
dribbled_their_side_oppj
got_ball_oppj
lost_ball_oppj
stole_ball_oppj

Table 1. Events used in the robotic
football model.

combine them in order to get an automaton rep-
resenting the desired system. Even using simplifi-
cations as those assumed in this work, a robotic
football game model can easily reach a dimension
of a few thousand different states. Building such
an automaton from scratch is therefore out of
question. The approach taken is

e to model the environment dynamics by one
FSA per environment resource (e.g., the ball,
the player position), where the FSA states
represent environment discretised states;

e to model each player behaviour by an FSA,
whose states represent the available be-
haviours;

e to compose the above smaller automata to
model the complete robotic football game;

e to model constraints on the composition
mentioned in the previous item by further
composing the resulting FSA with automata
representing the constraints.

For each of the above models, events are associ-
ated to the transitions between states. One may
consider uncontrollable events, which occur with-
out the players being able to disable them, and
controllable events, which can be enabled by the
players, representing actions that trigger appro-
priate behaviours. The uncertainty on the occur-
rence of the uncontrollable behaviours and the
cost function to be minimised determine the op-
timal sequence of controllable events, correspond-
ing to the optimal player behaviour. In the next
sub sections we describe the approach taken to
model the different sub-systems and the complete
system.

2.1 Ball Position

The ball can be placed in any of the previously
presented field zones as a consequence of each
player actions. The opponent players will only be
allowed to dribble the ball in their opposite goal
direction. Both players of the considered team,
on the other side, can also shoot the ball, clear
it in the goal direction or cross the ball to the
middle of the field. Fig. 1 shows the automaton
Ball,,s (ball position). Note that Ball,es is non-
deterministic due to the different consequences a
shot can have in a given state. Although concep-
tually other events like cross or clear could be also
non-deterministic, the option taken is sufficient to
introduce a new factor of richness into the system.
The state Scored is the only marked state of this
automaton, as expected.

dribbled_my_side_p1
dribbled_my_side_p2

dribbled_their_goal_p1
dribbled_their_goal_p2
shot_p1
shot_p2

dribbled_their_side_p1
dribbled_their_side_p2
clear_pl
clear_p2
shot_p1 shot_p1 shot_p1
shot_p2 shot_p2 shot_p2

v/
Ball

. - e -

dribbled_my_side_p1 . dribbled_their_side_p1

dribbled_my_side_p2
dribbled_my_side_opp1
dribbled_my_side_opp2
clear_pl
clear_p2
shot_p1

shot_p2

dribbled_their_goal_p1

dribbled_their_goal_p2
cross_pl
cross_p2

cross_pl
cross_p2

dribbled_their_side_p2
dribbled_their_side_opp1
dribbled_their_side_opp2
cross_pl
cross_p2
clear_p1
clear_p2
shot_p1
shot_p2

shot_p1
shot_p2

shot_p1
shot_p2

Fig. 1. Ballpes, the ball position model.

2.2 Player and Opponent Ball Possession

Fig. 2 shows the ball possession model for player 1
and opponent 1. Player 2 and opponent 2 models
are similar to these. A player or opponent, as can
be seen in Fig. 2, will control the ball if it gets
the ball or steals it from other player; it will lose
this control if it loses the ball or if the ball is
stolen by another player (note that the self loop
on state Don’t have ball P1 is necessary in order to
allow player 2 stealing the ball from opponent 1,
for example). A controlled player can additionally
lose this ball possession if it crosses, clears or
shoots the ball.

2.8 Player Vision

Vision is modelled in a very simple way: a player
either is seeing the ball or not seeing it. Opponents
are assumed to be always watching the ball.

got_ball_p1
stole_ball_p1

Don’t Have
have ball ball
P1 P1

stole_ball_p2
stole_ball_opp1
stole_ball_opp2

lost_ball_p1
stole_ball_p2
stole_ball_oppl
stole_ball_opp2
cross_pl
clear_p1
shot_p1

got_ball_oppl
stole_ball_opp1

Don’t Have
have ball ball
Oppl Oppl

stole_ball_p1 lost_ball_opp1
stole_ball_p2 stole_ball_p1
stole_ball_opp2 stole_ball_p2
stole_ball_opp2

Fig. 2. Plyg, player 1 ball possession model, and
Opplpay, opponent 1 ball possession model.

see_balll_p1
see_ball2_p1
see_ball3_p1

Don't See
see ball ball
P1 P1

don't_see_balll_p1
don't_see_ball2_p1
don't_see_ball3_p1

Fig. 3. P1,;s, player 1 vision model.
2.4 Player Position

The actions of the players also have an effect on
their positions. Automaton P1,,, corresponds to
the different position states player 1 can assume
as a result of dribbling or moving in the field. This
automaton effectively maps the field of play, indi-
cating, for a given position, the adjacent places
where the player can go.

reached_their_side_p1
dribbled_their_side_p1

reached_their_goal_p1
dribbled_their_goal_p1

P1
their
goal

reached_their_side_p1
dribbled_their_side_p1

reached_my_side_p1
dribbled_my_side_p1

Fig. 4. P1,,s, player 1 field position model.

2.5 Ball Position Dependence

A few events cannot be easily included in the
previous automaton, Pl,,s. An example is the
event approached_ball, although it does effec-
tively change the player position. In fact, ap-
proached_ball needs a context, i.e., the ball posi-
tion is also needed to unequivocally determine the
state that event leads into. Event got_ball needs a
context too, since a player can only get the ball
if it is in the same place the ball is. Since finite
state automata are not context dependent, the
only solution to implement such an event is to
build an automaton that accounts for both the
ball and player positions. This is accomplished
by completing the parallel composition between
Ball,,s and P1,,; with these contextual events.
Besides approached_ball and got_ball, see_ball and

don’t_see_ball are also dependent on both the ball
and player positions: intuitively, if a player is near
the ball it has more chances of seeing it than a
player very far from it. In Section 3, the interevent
occurrence times will be modelled stochastically
as having an exponential distribution. However,
no existing FSA formalism considers a variable
exponential rate for interevent times, i.e., each
event must be assigned a constant, state indepen-
dent transition rate. Yet, suppose there are n dif-
ferent see_ball events, i.e., “sub-events” see_bally,
see_bally, ..., see_ball,, behaving each one as
the original see_ball event. The transition rate
of see_ball can then be clearly controlled setting
the number of active “sub-events” at each state.
Enabling a large number of these “sub-events”
at a given state effectively increases the see_ball
event transition rate, since the sum of independent
Poisson random variables is also Poisson, with
transition rate equal to the sum of the rates of
these variables. On the other hand, if one intends
to make the ball hard to be seen at a given state,
then a small number of “these sub-events” should
be enabled. The same mechanism applies to the
don’t_see_ball event. Fig. 5 shows Ply,,, the ap-
plication of these context dependent events to the
parallel composition of player 1 and ball position
resulting automata. Note that some other events
do not appear in the resulting automaton in order
to improve readability.

got_ball_p1
see_balll_pl see_balll_pl see_balll_pl
. see_ball2_pl . see_ball2_p1 don't_see_balll_pl
see_ball3_p1 don't_see_balll_p1 don't_see_ball2_p1
don't_see_balll_p1 don't_see_ball2_p1 don't_see_ball3_p1
Ball my Ball my
side / P1 side / P1

my side their side

approached_ball_p1 approached_ball_p1

got_ball_p1
see_balll_p1 see_balll_p1 see_balll_pl
see_ball2_p1 see_ball2_p1 see_ball2_p1
don't_see_ball1_p1 see_ball3_p1 don't_see_balll_p1

don't_see_ball2_p1 don't_see_balll_p1 don't_see_ball2_p1

Ball their
side / P1
their side

Ball their
side / P1
their goal

Ball their
side / P1
my side

approached_ball_p1 approached_ball_p1

see_balll_p1 got_ball_p1

see_balll_pl see_ball2_p1 see_balll_p1
don't_see_balll_p1 don't_see_ball1_p1l see_ball2_p1
don't_see_ball2_p1 don't_see_ball2_p1 see_ball3_pl

don't_see_ball3_p1 don't_see_ball3_p1 don't_see_balll_p1

Ball their
goal / P1
their side

Ball their
goal / P1
their goal

Ball their
goal / P1
my side

approached_ball_p1 approached_ball_p1

Fig. 5. Plyy,, player 1 and ball positions depen-
dencies (partial picture).

2.6 Player Behaviour

Each player is always performing a behaviour
from a pre-specified set of different behaviours.
Fig. 6 presents that set of behaviours, showing
not only the events that start a given behaviour,
but also the events that cause each behaviour

to cease. Note that event stolen_ball_p1 does not
exist: it is only an abbreviation to stole_ball_p2,
stole_ball_opp1,stole_ball_opp2. Obviously some of
these behaviours need some preconditions in order
to be executed: a player cannot dribble the ball
if it does not have it. Such preconditions are
imposed by the constraining automata presented
in the next subsections. Note again that self-loops
in some states represent event occurrences that
do not change the FSA player behaviour but are
relevant for its composition with the other FSA.

reached_their_side_p1
dont_see_ball_p1

approached_ball_p1

dont_see_ball_p1

move_my_side_pl

dont_see_ball_p1
stole_ball_p1

reached_their_side_p1
dont_see_ball_ p1

fieached_their_side_p1
stop_p1

Moving
Their
Goal P1

get_ball_p1

move_their_goal_p1

Facing

Ball top_pl
1 \

face_ball_p1

dont_see_ball_p1

Teached_their_goal_p1

shot_p1
cross_p1
clear_p1
dont_see_ball_p1
stolen_ball_p1
lost_ball_p1

dribble_my_side_p1

Dribbling
My
Side P1

dribbled_my_side_p1
lost_ball_p1

stolen_ball_p1

stop_pl

dribbled_their_side_p1
dribbled_their_goal_p1 Jribble_their_side_p1

lost_ball_p1
stolen_ball_p1
stop_p1

stolen_ball_p1
stop_pl

Dribbling
Their
Side P1

Dribbling dribble_their_goal_p1
Their

Goal P1

dribbled_their_side_p1.

Fig. 6. Plyper, player 1 behaviour model.

Parallel composition of previous automata gener-
ates an automaton that typically has a significant
number of illegal states. Since it is not reasonable
to examine each state individually to assert its
admissibility, a set of additional automata are
created to model the dependencies between the
previous automata. This procedure is described
in the following subsections.

2.7 Vision, Position and Ball Possession Constraints

Some events are only acceptable at a specific
player vision state. Starting Getting Ball and
Facing Ball behaviours is only allowed if the
player effectively sees the ball. In the same way, a
player can only get or steal the ball if it can see
the ball. Automaton P1/, , the model of player 1
vision dependencies shown in Fig. 7(a), is in fact
a “richer” version of Pl,;s.

Additionally, the only restriction imposed to the
player field movement is the impossibility of drib-
bling or moving to a field position where the player
already is. Automata Pl,,s thus becomes P1j,,,
presented in Fig. 7(b). In this way only movements

to different positions of the field are allowed.

A player cannot lose the ball from sight if it
controls the ball. Getting or facing the ball when

the ball already is controlled by the player is also
impossible. Automaton P1;_;,, shown in Fig. 7(c),
takes care of these additional constraints. Note
also that the main difference between dribbling
and moving is that the former is carried out when
a player has the ball, while the later is accom-
plished when the player does not control the ball.
(Since opponents are only allowed to dribble the
ball, the only change in Opply,;, not shown here,
is the inclusion of events dribbled_my_side_oppl
and dribbled_their_side_opp1 as self loop transi-
tions in state Have ball Oppl.)

see_balll_p1
see_ball2_p1
see_ball3_p1

Don't See
see ball ball
P1 P1

don't_see_balll_p1 ?"I‘,bba”lrpll
don't_see_ball2_p1 stole_ball_p:

don't_see_ball3_pl get ball_p1
on_see_oals_p face_ball_p1

(a)

reached_their_goal_p1
dribbled_their_goal_p1

reached_their_side_p1
dribbled_their_side_p1

reached_my_side_p1.
dribbled_my_side_p1

reached_their_side_p1
dribbled_their_side_p1.

(b)

got_ball_p1
stole_ball_p2 stole_ball_p1

stole_ball_opp1

stole_ball_opp2 Don’t Have

dont_see_ball_p1 have ball ball
face_ball_p1 P1 P1
getball_p1

move_my_side_pl lost_ball_p1
move_their_side_p1 stole_ball_p2
move_their_goal_p1 stole_ball_oppl
stole_ball_opp2
cross_pl
clear_p1
shot_p1

(©)

dribble_my_side_p1
dribble_their_side_p1

dribble_their_goal_p1

Fig. 7. Plj,,, Pl,,, and P1j,,, respectively
player 1 constrained vision, position and ball

possession models.

2.8 Complete Model

After modelling all the “sub-automata” and the
constraining automata, one can obtain the foot-
ball game automaton, by a parallel composi-
tion between all those automata. After that the
marked states are merged into a single marked
state — the marked states correspond to a goal
being scored by our team —, resulting in an au-
tomaton with 5617 different states.

3. OPTIMAL ACTION SELECTION

The principle of dynamic programming provides
a method of obtaining the optimal sequence of
actions that minimise a given cost function over

a specified time interval (Bertsekas, 1987). This
principle can readily be applied once an automa-
ton representing the system under consideration
is available. Since the ultimate goal of a robotic
football game is scoring more goals than the op-
ponent team, a behaviour selection policy that
guarantees the minimum average time until the
team scores is sought. This behaviour selection is
cooperative, i.e., the actions of the two players
composing the team are considered as a whole,
instead of referring to each player individually,
and therefore an optimal sequence of action pairs
(one per player) is to be obtained for the team.

A cost C(j) = 0 is assigned to every marked
state j, while the other states get a cost C(j) = 1.
The expected time spent at unmarked states by an
automaton representing the match is then given
by

E Um C[X(t)]dt] , (1)

where X (t) denotes the match state at time ¢. Fur-
thermore, if the only marked states are those cor-
responding to a goal being scored and if there are
no transitions from marked to unmarked states,
then clearly (1) represents the desired expected
time until the team scores. Equation (1) is ap-
pealing, since it corresponds to the total expected
undiscounted cost criterion over an infinite hori-
zon (Cassandras and Lafortune, 1999). Now sup-
pose there is a set of actions the player can per-
form as soon as it reaches a state that affect
not only the cost value at that state but also
the transition probabilities leaving that state. The
problem of interest is then determining a policy
that minimises

E. {/OOO CIX (1), u(t)]dt| , (2)

where u(t) is a control action taken when a new
state is entered that depends on that state and
m is a given policy that determines the control
action for each state. To do so the automata
representing the game must be converted to a
Continuous-Time Markov Chain (CTMC), assign-
ing an exponential transition rate \; to each event
i. Afterwards, this CTMC is converted into a
Discrete-Time MC, applying an uniformisation
method with uniform rate 7 (Cassandras and
Lafortune, 1999). Determining a policy to min-
imise (2) is equivalent to determining a policy that
minimises

Ex

k=0

1
v

Since the cost is clearly bounded for every state
and there is only a finite set of control actions
U, then the minimum average time until a goal
is scored is given by Ty = % limy o0 Vi (2),

where ¢ is the initial state and Vi (¢) is the N-
step finite-horizon version of problem (3), defined
recursively by

Vir1(j) = qfrellUIi C(j,u) + ijr(u)vk(r) . (4)
I

with & = 0,..., N — 1, and V,(j) = 0 for all j.
Uj is the set of admissible actions at state j and
pjr(u) is the transition probability from state j to
state r when control action u is applied. The best
action to be performed at each state, in order to
minimise T},;,, is then equal to the action u that
minimises (4).

Note that each action effectively leads to a state
transition, rather than modifying directly the cost
and/or the transition probabilities of that state.
Assume j' = f(j, s(u, j)) is the new state, given by
the automaton transition function, after applying
the event sequence s(u,j) at state j, generated
by action u. Additionally, when dealing with non-
deterministic events or non-deterministic actions
(actions that can result in different sequences of
events), an expected cost must be assumed. Eq (4)
then becomes

Vi+1(j) = min C(j/)+zpj’rvk(r))

ueU;
with K =0,..., N — 1, and V4(j) = 0 for all j.

The main reason event shot was divided into
shot_b, shot,, and shot_g was the impossibility of
performing a parallel composition between non-
deterministic automata that share at least one
event, as this can lead to a lost of synchronisa-
tion on that event. To overcome this problem it
was decided to model the automaton as a deter-
ministic one, creating events shot_b, shot,, and
shot_g. Randomness was then applied to action
consequences: action shoot could randomly trigger
one of the three mentioned events. Note that, in
the end, there is no change to the automaton
stochastic behaviour.

4. RESULTS AND CONCLUSIONS

To obtain the optimal set of actions exponential
rates were assigned to each of the uncontrollable
events, based on empirical considerations. The
rates absolute value does not matter: what is
important are the relative rates of different events,
with high transition rates corresponding to short
interevent times and low rates associated with
long time intervals. These rates values were chosen
to simulate a worst-case environment, where the
ball is often lost and considerable time is taken to
recover it back.

In order to obtain the optimal actions and respec-
tive state costs, equation (5) was successively ap-
plied until » 3, Viy1(5) =32, Vi(j) < 1x 1072, this

way assuring an accurate solution was obtained.
Supposing the game starts with both players in
the field zone denoted My Side, that the ball is in
that zone too, that no player initially controls the
ball neither sees it, then the minimum expected
time until scoring a goal using such initial state
is obtained at the 912" iteration and is equal to
Trin = %‘/912(1') = 143.83 seconds. 1000 expe-
riences were then conducted using the obtained
optimal policy on a simulator specifically devel-
oped in the context of this work. The observed
average time until scoring a goal was 143.84 sec-
onds, confirming the theoretical value. The player
behaviour was the intuitively expected. It is curi-
ous to see how the optimal actions change when
some of the event rates are modified. If dribbling
the ball to the opposite goal becomes too slow,
then the optimal action when the player has the
ball is to shoot the ball or cross it to the opponents
goal zone. However, if the probabilities of taking a
good shot are lowered, then the player may want
to dribble the ball again to the opposite goal.

This work represents preliminary steps on the
modelling of robotic behaviour based on discrete
event techniques, and the usage of such model for
optimal decision making concerning the selection
of the controllable events, therefore of the optimal
behaviours given a state of the robot and its sur-
rounding environment. Topics for future work will
include the experimental determination of the in-
terevent time rates by either Monte-Carlo “batch”
methods of iterative methods, such as those based
on Reinforcement Learning techniques (Sutton
and Barto, 1999). The discretisation resolution of
the environment should also be further studied as
it exponentially affects the state space dimension.

REFERENCES

Bertsekas, D. (1987). Dynamic Programming: De-
terministic and Stochastic Models. Prentice-
Hall. Englewood Cliffs, NJ.

Cassandras, C. and S. Lafortune (1999). Introduc-
tion to Discrete Event Systems. Kluwer Aca-
demic Publishers.

Koseckd, J. (1996). A framework for modeling
and verifying visually guided agents: Design,
analysis and experiments.

Milutinovic, D. and P. Lima (2002). Petri net
models of robotic tasks. In: Proc. of IEEE
2002 Int. Conf. on Robotics and Automation
(ICRA 2002).

Montano, L., F. Garcfa and J. Villarroel (2000).
Using the time petri net formalism for spec-
ification, validation and code generation in
robot-control applications. The International
Journal of Robotics Research 19(1), 59-76.

Sutton, R. and A. Barto (1999). Reinforcement
Learning - An Introduction. The MIT Press.

