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Reinforcement Learning
1-Environment Model

ENVIRONMENT

—1 REINFORCEMENT
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Reinforcement Learning
2-Properties

e Unknown and Stochastic Environment

e Inference Learning (trial and error)

e Partial Evaluation of each action (reinforcement)
e Sequential Problem (prediction)

e Objective: to obtain an action policy that maximise the sum of
reinforcements

O
V = Z Tt
=0
e Solutions:

— temporal difference (Markovian reinforcements)

— policy search (evaluating a policy)
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Reinforcement Learning
3-Programming an Agent

ENVIRONMENT

REINFORCEMENT =
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Reinforcement Learning
4-Reinforcement Function
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e Most famous algorithms consider Markovian reinforcements

— features (score, hit a wall, find a resource, etc.)

— weight vector
— additive, linear and independent

e How to describe different reinforcement functions?

— collecting water with a finite size glass
— Possible solution: use of history (POMDP)

e How to discover unknown reinforcement function?

— What the value of a score in soccer game when the game is:
1x0, 0x0, 1x0, 2x0, 3x0
— Possible solution: preference elicitation
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1-Definition
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REWARD

- < FUNCTION (W)
-:q.?;.\\\. @ v
./ * +4 e Given the agent's policy (S — .A) determine the weight vector
|/ 4 W
" s

e Given the agent's behaviour (history of pairs (s, a) summarised
by a feature vector p) determine the weight vector W



Inverse Reinforcement Learning
2-Analytic Solution

INSTITUTO
SUFERIOR
TECNICO

)R

e Characteristic of the set of solutions [Ng and Russell,00]:

(T — T,)(I — AT ) - R>0foralla € A

e to each policy 7 is associated an hvper-cone in the weight space
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Inverse Reinforcement Learning with Evaluation
1-Definition
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e given relative evaluation of measurements of some agent's be-
haviours over time, determine the weight vector W of the rel-
ative evaluation.



Inverse Reinforcement Learning with Evaluation

2-Local Search IRLE
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e Hypothesis: the evaluator can average the behaviours presented

I ? e Algorithm (Local Search):

— given W the current best weight

INSTITUTO DE . .
SISTEMAS E — execute myy during 1’ time step

— choose a neighbour W' of W

4

=, ﬁﬁ — execute 7y during 1" time step

by . .

X e — if miy is better evaluated than 73y, updates W «— W/’
By ‘ /

sdiie . o Heuristic:

— when the neighbour is better, keeps the same direction
— choose neighbours with different policies

— choose direction that respect the last evaluations



IITF Inverse Reinforcement Learning with Evaluation

2-Expected IRLE

INSTITUTO

SUFERIOR

TSNS o Objective: find out the mean weight W that averages all W

that respect answer constraints
I l' — choose a weight vector W that satisfy all known constraints
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e Algorithm (Q-Learning):

— choose a action a and execute it

EN. @ — if the run has finished, ask for an evaluation
/* '4  —update the known constraints
5 ‘.._,,:" e Problems:

— number of constraints very large (choose the most common)
— constraints can be non-linear (try satisfying the most)

— average must be normalised (expected utility theory)



Experiment
1-Scenario

e Attacker (red) must learn to score as many as possible per time
(average reinforcements # sum reinforcements)

e Defender (blue) tries deterministically to intercept the attacker

e Attacker score with probability 5P~ where D is the Manhat-
tan distance to the goal

e A new run start when ball is kicked or defender intercept attacker



Experiment
2-Local Search
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e Experiment 1:

— Without and with defender
— Without and With heuristic based on 10 constraints

— Solving an MDP based on model

— period 7" = 100 and T" = 1000
e Experiment 2:

— fixed learning time 20000 steps

— different periods 1" = 100, T" = 200, T = 500 and 1" = 1000
e Experiment 3:

— solving the RL problem during execution



IITF Experiment

2-Local Search (T' = 1000)
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Experiment

2-Local Search (T

— 100)
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Experiment

2-Local Search (20000 steps)
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IITF Experiment
2-Local Search (Learning through execution)
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Experiment

3-Expected IRLE

e Experiment:

— environment without Defender

— considers 20 most common feature vectors

— learns with Q-Learning algorithm through 50000 steps
— acting randomly or e-greedy

— transferring to environment with Defender
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Experiment

3-Expected IRLE
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e Preference Elicitation

— Abstraction from Environment

— Transfer of objectives
e Problems

— It is necessary too many evaluations

— It is not useful against human evaluators
e Future Works

— Trying to show behaviours that give more information
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