
On the control of complex systems

through abstractions

Paulo Tabuada
Department of Electrical Engineering

http://www.nd.edu


Introduction

Embedded devices? Where are they?



Introduction

Embedded devices? Where are they?



Introduction

Embedded devices? Where are they?



Introduction

Embedded devices? Where are they?



Introduction

Embedded devices? Where are they?



Introduction

Embedded systems are computational devices with distinctive characteristics:

• They interface the physical world through sensors and actuators;

• They react to physical environment stimuli;

• They require networked and distributed information processing;

• They are frequently part of safety critical applications.



Introduction

Embedded systems are computational devices with distinctive characteristics:

• They interface the physical world through sensors and actuators;

• They react to physical environment stimuli;

• They require networked and distributed information processing;

• They are frequently part of safety critical applications.

The mixed discrete (computation) and continuous (physical world) nature of embedded devices

renders its analysis and design particularly difficult:

• Performance and correctness of operation of continuous controllers critically depend on

software/hardware implementations;

• Real-time scheduling of control and communication tasks is aggravated by the reduced

computational capabilities of embedded devices;

• Standard verification techniques cannot be applied to embedded software since differential

equations cannot, in general, be captured by finite state models.



Introduction

In today’s talk I will try to describe two (three) different lines of research based on the same

simple idea:

Vanquish complexity through abstraction.



Introduction

In today’s talk I will try to describe two (three) different lines of research based on the same

simple idea:

Vanquish complexity through abstraction.

They are:

1. Synthesis of correct by design embedded control software through finite abstractions of

control systems;

a) Distributed supervisory control for alternating simulation and bisimulation specifica-

tions;

2. Synthesis of real-time schedulers for stabilizing control tasks.



Current practice in embedded software design

Current practice in embedded software development iteratively combines software design with

validation techniques.

Software
design



Current practice in embedded software design

Current practice in embedded software development iteratively combines software design with

validation techniques.

Software
design

Software
validation



Current practice in embedded software design

Current practice in embedded software development iteratively combines software design with

validation techniques.

Software
design

Software
validation



Current practice in embedded software design

Current practice in embedded software development iteratively combines software design with

validation techniques.

Software
design

Software
validation

This iterative scheme has several drawbacks:

• Validation by extensive simulation and testing increases our confi-

dence in the software but fails to provide adequate guarantees of

correct operation and performance;

• Formal verification is currently limited to finite state systems and

thus cannot be used to verify properties depending on continuous

components;

• Extensive validation is time consuming thus increasing the cost and

time-to-market of embedded software.



Current practice in embedded software design

Current practice in embedded software development iteratively combines software design with

validation techniques.

Software
design

Software
validation

This iterative scheme has several drawbacks:

• Validation by extensive simulation and testing increases our confi-

dence in the software but fails to provide adequate guarantees of

correct operation and performance;

• Formal verification is currently limited to finite state systems and

thus cannot be used to verify properties depending on continuous

components;

• Extensive validation is time consuming thus increasing the cost and

time-to-market of embedded software.

Some of these disadvantages can be mitigated by adopting a correct by design approach to

the development of embedded control software.



Synthesizing correct embedded control software

We adopt a three phase approach to the synthesis of correct by design embedded control

software:

Abstraction

x(t+1)=f(x(t),u(t))
dx(t)/dt=f(x(t),u(t))
continuous dynamics

finite bisimulation



Synthesizing correct embedded control software

We adopt a three phase approach to the synthesis of correct by design embedded control

software:

Controller design

software+hardware model finite bisimulationfinite controller



Synthesizing correct embedded control software

We adopt a three phase approach to the synthesis of correct by design embedded control

software:

Controller refinement

finite controller

hybrid controller

q(k+1)=g(q(k),x(t))
u(t)=h(q(k),x(t))



Synthesizing correct embedded control software

We adopt a three phase approach to the synthesis of correct by design embedded control

software:

Ultimately, we would like to:

1. Specify the continuous dynamics;

2. Specify the software+hardware platform;

3. Define the specification;



Synthesizing correct embedded control software

We adopt a three phase approach to the synthesis of correct by design embedded control

software:

Ultimately, we would like to:

1. Specify the continuous dynamics;

2. Specify the software+hardware platform;

3. Define the specification;

4. Obtain embedded code enforcing the specification for the continuous dynamics on the

given software+hardware platform.



Symbolic models: Discrete-time

A discrete-time control system is defined by a map:

f : M × U → M (1.1)

describing the state f(x, u) ∈ M resulting from applying input u ∈ U at the state x ∈ M . In

many situations the resulting state f(x, u) cannot be observed directly but rather through an

output map:

r : M → P (1.2)

transforming states x ∈ M into outputs r(x) ∈ P .

Define bisimulation.



Symbolic models: Discrete-time

Theorem 1.1 Let M × U
f- M

r- P be a discrete-time control system satisfying any

of the following assumptions:

1. f is linear and controllable;

2. f and r are linear and (f, r) is output ontrollable;

3. f is feedback linearizable or differentially (difference) flat.

Then, any finite partition of the output space induces a finite bisimilar quotient.



Symbolic models: Discrete-time

Theorem 1.1 Let M × U
f- M

r- P be a discrete-time control system satisfying any

of the following assumptions:

1. f is linear and controllable;

2. f and r are linear and (f, r) is output ontrollable;

3. f is feedback linearizable or differentially (difference) flat.

Then, any finite partition of the output space induces a finite bisimilar quotient.

In general it is difficult to obtain discrete-time models.

State partitions suffer from an intrinsic lack of robustness.



Symbolic models: Continuous-time

Start with the double integrator:

ẋ1 = x2

ẋ2 = u

and chose a finite set of input trajectories (or control quanta in the quantized control systemsa

terminology):

u− : [0, 1] → R u0 : [0, 1] → R u+ : [0, 1] → R

u−(t) = −1 u0(t) = 0 u+(t) = 1

Starting from the origin and applying u−, u0 and u+ we obtain a symbolic description of some

behaviors of the double integrator.

aA. Bicchi, A. Marigo, and B. Piccoli. On the reachability of quantized control systems. IEEE Transactions on

Automatic Control, 4(47):546-563, April 2002.



Symbolic models: Continuous-time

x2

x1u0

u+

u-



Symbolic models: Continuous-time

x2

x1u0

u0

u+

u-

u+

u+

u-

u-

u0



Symbolic models: Continuous-time

u0

x2

x1

u0

u0 u0

u0 u0

u0

u+ u+

u- u-

u+ u+ u+

u+ u+

u-u-

u-u-u-



Symbolic models: Continuous-time

u0

x2

x1

u0

u0 u0

u0 u0

u0

u+ u+

u- u-

u+ u+ u+

u+ u+

u-u-

u-u-u-

The question I will try to address is:

When is this symbolic subsystem representative of the whole system behavior?



Symbolic models: Continuous-time

Define symbolic subsystem.

Once we have a symbolic subsystem T of the transition system TΣ associated with a control

system Σ, we can regard controller synthesis for Σ as a supervisory control problem:



Symbolic models: Continuous-time

Define symbolic subsystem.

Once we have a symbolic subsystem T of the transition system TΣ associated with a control

system Σ, we can regard controller synthesis for Σ as a supervisory control problem:

Specification: S ⊆ O∗;

Assumptions: T ≺ TΣ and ∃ Tc such that L(Tc ‖ T ) ⊆ S;

Conclusion: T ′
c = Tc ‖ T satisfies L(T ′

c ‖ TΣ) ⊆ S.

Specification: TS ;

Assumptions: T ≺ TΣ, ∃ Tc such that Tc ‖ T ≺ TS and ...

Conclusion: T ′
c = Tc ‖ T satisfies T ′

c ‖ TΣ ≺ TS .



Symbolic models: Continuous-time

Define symbolic subsystem.

Once we have a symbolic subsystem T of the transition system TΣ associated with a control

system Σ, we can regard controller synthesis for Σ as a supervisory control problem:

Specification: S ⊆ O∗;

Assumptions: T ≺ TΣ and ∃ Tc such that L(Tc ‖ T ) ⊆ S;

Conclusion: T ′
c = Tc ‖ T satisfies L(T ′

c ‖ TΣ) ⊆ S.

Specification: TS ;

Assumptions: T ≺ TΣ, ∃ Tc such that Tc ‖ T ≺ TS and ...

Conclusion: T ′
c = Tc ‖ T satisfies T ′

c ‖ TΣ ≺ TS .

There are, however, two difficulties with the above principles:

1) They only provide sufficient conditions;

2) Supervisor T ′
c can only be used to control TΣ for initial conditions in Q ⊂ Rn.



Symbolic models: Continuous-time

The second problem can be solved if we work on a compact and if we can ”robustify” T .

x2

x1



Symbolic models: Continuous-time

The second problem can be solved if we work on a compact and if we can ”robustify” T .

x2

x1



Symbolic models: Continuous-time

The second problem can be solved if we work on a compact and if we can ”robustify” T .

x2

x1



Symbolic models: Continuous-time

Let us call a linear control system ẋ = Ax + Bu feedback stabilizable if there exists a linear

feedback u = Kx such that ẋ = Ax+BKx is stable. In this case there exists also a Lyapunov

function V satisfying V̇ = ∂V
∂x (Ax + BKx) ≤ 0.



Symbolic models: Continuous-time

Let us call a linear control system ẋ = Ax + Bu feedback stabilizable if there exists a linear

feedback u = Kx such that ẋ = Ax+BKx is stable. In this case there exists also a Lyapunov

function V satisfying V̇ = ∂V
∂x (Ax + BKx) ≤ 0.

Theorem 1.2 Let TΣ = (QΣ, Q0
Σ,−→Σ, OΣ,HΣ) be the transition system associated with

a linear control system Σ. If Σ is feedback stabilizable, then for:

1. any stabillizing linear controller K and corresponding Lyapunov function V ;

2. any symbolic sub-system T = (Q,Q0,−→, O,H) of TΣ;

3. any bounded subset Q′
Σ of QΣ containing Q,

there exists a real number µ ∈ R such that R ⊆ Q×Q′
Σ defined by:

(q, x) ∈ R when V (x− q) ≤ µ

is a simulation relation from T to T ′
Σ satisfying R(Q) = Q′

Σ, where T ′
Σ = (Q′

Σ, Q′
Σ,−→

, O,H ′
Σ) with q ∈ H ′

Σ(x) when V (x− q) ≤ µ.



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1

We can do even better if we strengthen stability to an asymptotic stability.

In this case V satisfies V̇ = ∂V
∂x (Ax + BKx) < −αV for α > 0 and this implies:

V (t) < V (0)e−αt



Symbolic models: Continuous-time

Asymptotic stability allows for a decrease in the ”uncertainty” measured by the Lyapunov

function. This can be captured by working with a countable version of T :

Definition 1.3 Let TΣ be the transition system induced by a linear control system Σ. For

any sub-system T = (Q,Q0,−→, O,H) of TΣ, TN0 denotes the transition system defined by

TN0 = (Q × N0, Q
0 × N0,−→N0 , O × N0,HN0) where (q, n) −→N0 (q′, n′) if q −→ q′ in T

and n′ = n + 1, and HN0(q, n) = {(q, n)}.

Defining σ = e−ατ < 1 where τ is the duration of the input trajectories used to construct

symbolic subsystem T we have the following ”graded” version of Theorem 1.2.



Symbolic models: Continuous-time

Theorem 1.4 Let TΣ = (QΣ, Q0
Σ,−→Σ, OΣ,HΣ) be the transition system associated with a

linear control system Σ. If Σ is asymptotically feedback stabilizable, then for:

1. any asymptotically stabillizing linear controller K and corresponding Lyapunov function

V satisfying V̇ ≤ −αV ;

2. any symbolic sub-system T = (Q,Q0,−→, O,H) of TΣ;

3. any bounded subset Q′
Σ of QΣ containing Q,

there exists a real number µ ∈ R such that R ⊆ (Q× N0)×QΣ defined by:

((q, n), x) ∈ R when V (x− q) ≤ µσn

is a simulation relation from TN0 to T ′
Σ satisfying R(Q) = Q′

Σ, where T ′
Σ = (Q′

Σ, Q′
Σ,−→Σ

, O × N0,H
′
Σ) with (y, n) ∈ H ′

Σ(x) when V (x− y) ≤ µσn.



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Symbolic models: Continuous-time

x2

x1



Examples

Let us reconsider the double integrator Σ and its symbolic subsystem:

u0 u0

u0 u0

u0 u0

u0

u+ u+ u+

u+ u+

u-u-

u-u-u-

Σ can be stabilized by u = −x1 − x2 and control Lyapunov function V = x2
1 + x1x2 + x2

satisfies V̇ = −V .

Enforcing the string u−u+u+u0u−u−u+ results in:

u0 u0

u0 u0

u0 u0

u0

u+ u+ u+

u+ u+

u-u-

u-u-u-

-1 -0.5 0.5 1

-1

-0.5

0.5

1



Symbolic models: Examples

Let us reconsider the double integrator Σ and its symbolic subsystem:

u0 u0

u0 u0

u0 u0

u0

u+ u+ u+

u+ u+

u-u-

u-u-u-

Σ can be stabilized by u = −x1 − x2 and control Lyapunov function V = x2
1 + x1x2 + x2

satisfies V̇ = −V .

Enforcing the string u−u+u0u+u−u0u0 results in:

u0 u0

u0 u0

u0 u0

u0

u+ u+ u+

u+ u+

u-u-

u-u-u-

-1 -0.5 0.5 1

-1

-0.5

0.5

1



Symbolic models: Conclusions

Linearity + stability ⇒ control based on symbolic subsystems is possible, up to a certain

resolution;



Symbolic models: Conclusions

Linearity + stability ⇒ control based on symbolic subsystems is possible, up to a certain

resolution;

Nonlinear systems? Incremental stability and Input-to-State stability;



Symbolic models: Conclusions

Linearity + stability ⇒ control based on symbolic subsystems is possible, up to a certain

resolution;

Nonlinear systems? Incremental stability and Input-to-State stability;

How to chose the symbolic subsystem? Under study, for linear systems it suffices to chose

u−, u0 and u+ per input;



Symbolic models: Conclusions

Linearity + stability ⇒ control based on symbolic subsystems is possible, up to a certain

resolution;

Nonlinear systems? Incremental stability and Input-to-State stability;

How to chose the symbolic subsystem? Under study, for linear systems it suffices to chose

u−, u0 and u+ per input;

Bisimulation? Under study, possible using the ”right” notion of ”approximate” or ”tolerance”

bisimulation and for certain classes of input trajectories. Related to work bya Girard and

Pappas, andb Caspi and Benveniste.

aApproximation metrics for discrete and continuous systems. Technical Report MS-CIS-05-10, Dept. of CIS,

University of Pennsylvania, May 2005.
bToward an Approximation Theory for Computerised Control. 2nd International Workshop on Embedded Soft-

ware, 2002.



Simple examples of safety controllers

Controllable linear model obtained by time-discretization of a double in-

tegrator model of each wheel. Note that the unicycle kinematic model

can be brought to this form by dynamic feedback linearization.

Observation map defines a 10× 10 grid on the state space.


