

INSTITUTO D SISTEMAS E ROBÓTICA

2006 AAS/AIAA Space Flight Mechanics Meeting

22-26 Janurary 2006 Tampa, Florida EUA

DECENTRALIZED, LOW-COMMUNICATION STATE ESTIMATION AND OPTIMAL GUIDANCE OF FORMATION FLYING SPACECRAFT

Dan Dumitriu, Sónia Marques, Pedro Lima, Bogdan Udrea

ESA (European Space Agency) project RFQ/3-10624/03/NL/LvH/bj "Formation Estimation Methodologies for Distributed Spacecraft"

NSTITUTO DE SISTEMAS E ROBÓTICA

GNC for spacecraft formation \rightarrow Contents

Plan of the presentation

- □ Introduction
- **D** Relative Dynamics for Eccentric Orbits
- **Guidance and Control**
 - Optimal Trajectory Planning problem
 - □ Closed-loop GC algorithm
- □ Navigation
 - □ Measurements and Relative state vector
 - Full State Decentralized Problem
 - □ Covariance Intersection
 - □ Full algorithm
- Simulation results
- □ Conclusions

Introduction \rightarrow **GTO** Mission

Introduction \rightarrow **GTO** Mission

Mission goal during Formation Acquisition Mode:

Formation Flying demonstration mission in a GTO orbit:

- •Science experiments in apogee
- •3 spacecraft Formation Flying
- •1orbit period:12hours

ROBÓTICA

 \rightarrow from an initial *random* disposition (at θ_1 =beginning of FAM)

within a sphere of 8km in diameter centered in the dispenser, the relative velocities being null (with a random error of ± 0.1 m/s added)

\rightarrow to the desired final disposition at $\theta_{\rm 2}$ (end of FAM),

i.e., an isosceles triangle formation with the equal edges of 250m and with a 120° angle between them. $^{4/24}$

SUPERIOR

GNC for spacecraft formation \rightarrow Relative dynamics for eccentric orbits

Illustration of the relative dynamics TF₁ INSTITUTO parameters that we use TÉCNICO TF2 $\vec{\rho}_i = \begin{vmatrix} x_i \\ y_i \\ z \end{vmatrix}$ for i = 1, 2, 3 $\bar{\rho}_1$ hub θ ROBÓTICA 2 reference frames Inertial Planet Frame (IPQ) Earth Local Vertical Local Horizon (LVLH) frame **Orbital parameters of the GTO orbit** •semi-major axis a, eccentricity e, RAAN Ω , •inclination i, argument of perigee ω , true anomaly θ period $t - t_p = \frac{1}{n} \left| 2 \arctan\left(\sqrt{\frac{1-e}{1+e}} \tan \frac{\theta}{2}\right) - \frac{e\sqrt{1-e^2} \sin \theta}{1+e \cos \theta} \right|$ T = 12h 34s5/24

TÉCNICO

ROBÓTICA

GNC for spacecraft formation \rightarrow Relative dynamics for eccentric orbits

Linearized θ -varying relative dynamics equations (in LVLH)

• In-plane motion of i^{th} spacecraft (i=1,2,3)

 $\frac{d}{d\theta}\begin{bmatrix}y_i\\y_i\end{bmatrix} = \begin{bmatrix}0 & 1\\\frac{-1}{1+e\cos\theta} & \frac{2e\sin\theta}{1+e\cos\theta}\end{bmatrix}\begin{bmatrix}y_i\\y_i\end{bmatrix} + \frac{(1-e^2)^3}{(1+e\cos\theta)^4n^2}\begin{bmatrix}0\\1\end{bmatrix}(u_{i,y}+\sum w_{i,y})$

• Perturbations in GTO orbit: *J*₂ effect, third-body (Sun, Moon) gravitational differential perturbations, micrometeoroids, atmospheric drag, solar radiation pressure

CNICO

GNC for spacecraft formation \rightarrow Optimal trajectory planning problem

FAM Optimal Trajectory Planning problem

• Non-linear θ -varying dynamics equations (State equations) $\frac{d[\mathbf{X}(\theta)]}{d\theta} = \mathbf{A}(\theta)\mathbf{X}(\theta) + \mathbf{B}(\theta)[\mathbf{U}(\theta) + \mathbf{W}(\theta)]$

- Initial and final conditions (two-boundary conditions)
- Limitations concerning the control inputs

 $u_{\min} \le |U_j| \le u_{\max}$, with $u_{\min} = 0.1 \mu N$, $u_{\max} = 17 mN$

- The cost function to be minimized, taking into account the propellant consumption $J = \int_{\theta_1}^{\theta_2} L(\mathbf{X}(\theta), \mathbf{U}(\theta), \theta) d\theta = \int_{\theta_1}^{\theta_2} \sum_{j=1}^{9} U_j^2 d\theta$
- ⇒ Guidance and Control are handled simultaneously. In fact, the current approach is purely Guidance, and we re-plan regularly! 7/24

INSTITUTO SUPERIOR TÉCNICO

Pontryagin's maximum principle (PMP) to solve the optimal trajectory planning problem

Hamiltonian:
$$H(\mathbf{X}, \mathbf{U}, \theta) = L(\mathbf{X}, \mathbf{U}, \theta) + \sum_{k=1}^{18} \lambda_k f_k(\mathbf{X}, \mathbf{U}, \theta)$$

+ co-state equations introduced

The control inputs which satisfy, for all $\theta_1 \le \theta \le \theta_2$, the stationarity conditions, are the optimal control inputs, the corresponding trajectory being optimal as well !

Stationarity conditions

$$U_{j}^{opt} = -\frac{1}{2} \frac{(1-e^{2})^{3}}{(1+e\cos\theta)^{4}n^{2}} \lambda_{2j}, \quad for \quad j = 1,...,9$$

So, the optimal control inputs U_j^{opt} are linked to the adjoint variables λ_i of the PMP formulation by these linear relations!

GNC for spacecraft formation \rightarrow Closed-loop GC algorithm

TÉCNICO

NSTITUTO DE SISTEMAS E ROBÓTICA

Closed-loop GC algorithm to solve the Optimal Trajectory Planning problem

>The closed-loop GC algorithm = algebraic version of the iterative shooting method. The algorithm is simple and reliable \Rightarrow very few convergence troubles

needs little computing-time, much less than 1s (Pentium4 3.0GHz)

>The control inputs limitations and collision avoidance are considered a posteriori. Perturbations are not considered.

>To take the unmodeled perturbations + the state estimation errors into account, the algorithm is recomputed periodically, at regularly spaced time instants, and the planned trajectory is updated !

Example: For a 6h FAM, during the first 5h we execute the algorithm every 500s. In the last hour, we execute it every 100s.

1jr

INSTITUTO D SISTEMAS E ROBÓTICA

GNC for spacecraft formation \rightarrow Closed-loop GC algorithm

• The differential state equations (without perturbations) are:

$$\frac{d\mathbf{X}_{i}}{d\theta}\Big|_{\theta_{k}} = \mathbf{A}_{i}(\theta_{k})\mathbf{X}_{i}(\theta_{k}) + \mathbf{B}_{i}^{\Lambda}(\theta_{k})\boldsymbol{\Lambda}_{i}(\theta_{k}) \qquad \frac{d\mathbf{X}_{i}}{d\theta}\Big|_{\theta_{k}} = \frac{\mathbf{X}_{i}(k+1) - \mathbf{X}_{i}(k)}{\delta\theta}$$
$$\Rightarrow \mathbf{X}_{i}(k+1) = \overline{\mathbf{A}}_{i}(k)\mathbf{X}_{i}(k) + \overline{\mathbf{B}}_{i}(k)\boldsymbol{\Lambda}_{i}(k)$$

> for the adjoint variables vector: $\Lambda_i(k+1) = \overline{\mathbf{C}}_i(k)\Lambda_i(k)$

 $\begin{aligned} \mathbf{X}_{i}(k+1) & and \ \mathbf{\Lambda}_{i}(k+1) \text{ expressed directly as function of} \\ \mathbf{X}_{i}(0) & and \ \mathbf{\Lambda}_{i}(0): \\ \mathbf{X}_{i}(k+1) = \mathbf{P}_{i}(k)\mathbf{X}_{i}(0) + \mathbf{Q}_{i}(k)\mathbf{\Lambda}_{i}(0) \\ \mathbf{\Lambda}_{i}(k+1) = \mathbf{N}_{i}(k)\mathbf{\Lambda}_{i}(0) \end{aligned}$

INSTITUTO SUPERIOR TÉCNICO

INSTITUTO DI SISTEMAS E ROBÓTICA

GNC for spacecraft formation \rightarrow Closed-loop GC algorithm

Recurrent sequence (\Leftrightarrow propagating dynamics) 1. \Im $\mathbf{P}_i(0) = \overline{\mathbf{A}}_i(0), \quad \mathbf{Q}_i(0) = \overline{\mathbf{B}}_i(0), \quad \mathbf{N}_i(0) = \overline{\mathbf{C}}_i(0)$ 2. \Im FOR k=1 TO *n*-1 $\mathbf{P}_i(k) = \overline{\mathbf{A}}_i(k)\mathbf{P}_i(k-1)$ $\mathbf{Q}_i(k) = \overline{\mathbf{A}}_i(k)\mathbf{Q}_i(k-1) + \overline{\mathbf{B}}_i(k)\mathbf{N}_i(k-1)$ $\mathbf{N}_i(k) = \overline{\mathbf{C}}_i(k)\mathbf{N}_i(k-1)$

▶ trajectory planned between $\theta_1 = \theta_{k=0}$ and $\theta_2 = \theta_{k=n}$, with: $n = \frac{\theta_2 - \theta_1}{\delta \theta}$

- $\Rightarrow \mathbf{Q}_i(n-1)\mathbf{\Lambda}_i(0) = \mathbf{X}_i(\theta_2) \mathbf{P}_i(n-1)\mathbf{X}_i(\theta_1)$
- \Rightarrow Algebraic system of 6 (4+2, decoupled) linear equations (unknowns $\Lambda_i(0)$), can be solved analytically.
- We know Λ_i(0) ⇒ we know all Λ_i(θ) ⇒ we know all U_i(θ) (optimal control inputs), by the stationarity conditions

INSTITUTO D SISTEMAS E ROBÓTICA

GNC for spacecraft formation → Closed-loop GC algorithm

A posteriori consideration of collision avoidance ●EXAMPLE:

 $|\mathsf{F}| \left| \vec{\rho}_{12}^{so} \right| < \rho_{\min} = 40m$

THEN $\vec{u}_1 = \vec{u}_1^{so} - \vec{u}_{12}, \quad \vec{u}_2 = \vec{u}_2^{so} + \vec{u}_{12}, \\ \vec{u}_3 = \vec{u}_3^{so}$

Control inputs limitations IF $|u_{1,x}| > u_{max}$ THEN $|u_{1,x}| = u_{max}$

ROBÓTICA

GNC for spacecraft formation \rightarrow Navigation

 S/C_i State vector: Relative variables $\vec{\rho}_i = \vec{\rho}_{ki}$ $\chi = \begin{bmatrix} (\vec{\rho}_{12})^T & (\vec{\rho}_{32})^T & (\vec{\rho}_{31})^T & (\vec{\rho}_{12}')^T & (\vec{\rho}_{32}')^T & (\vec{\rho}_{31}')^T \end{bmatrix}^T$ **LVLH** $= \begin{bmatrix} x_{12} \\ y_{12} \\ z_{12} \end{bmatrix}^{T} \begin{bmatrix} x_{32} \\ y_{32} \\ z_{22} \end{bmatrix}^{T} \begin{bmatrix} x_{31} \\ y_{31} \\ z_{31} \end{bmatrix}^{T} \begin{bmatrix} x_{12}' \\ y_{12}' \\ z_{12}' \end{bmatrix}^{T} \begin{bmatrix} x_{32}' \\ y_{32}' \\ z_{32}' \end{bmatrix}^{T} \begin{bmatrix} x_{31}' \\ y_{31}' \\ z_{31}' \end{bmatrix}^{T} \begin{bmatrix} x_{31} \\ y_{31}' \\ z_{31}' \end{bmatrix}^{T} \begin{bmatrix} x_{12} \\ y_{12}' \\ z_{12}' \end{bmatrix}^{T} \begin{bmatrix} x_{12}' \\ y_{12}' \\ z_{12}' \end{bmatrix}^{T} \begin{bmatrix}$ s/c $\|\vec{\rho}_i - \vec{\rho}_i\|^{R_1} = \sqrt{(x_{ij} - ap)^2 + y_{ij}^2 + z_{ij}^2}$

> $\left\|\vec{\rho}_{i}-\vec{\rho}_{j}\right\|^{R_{2}}=\sqrt{x_{ij}^{2}+(y_{ij}-ap)^{2}+z_{ii}^{2}}$ $\left\|\vec{\rho}_{i} - \vec{\rho}_{j}\right\|^{R_{3}} = \sqrt{x_{ij}^{2} + y_{ij}^{2} + (z_{ij} - ap)^{2}}$

> > 13/24

GNC for spacecraft formation \rightarrow Navigation $\overbrace{5}^{P} \qquad \overbrace{2}^{P} \qquad \overbrace{2}^{P} \qquad \overbrace{\overline{(\vec{\rho}_{12})^{T}}}_{12} \qquad \overbrace{\overline{(\vec{\rho}_{32})^{T}}}_{12} \qquad \overbrace{\overline{(\vec{\rho}_{31})^{T}}}_{12} \qquad \overbrace{\overline{(\vec{\rho}_{31})^{T}}}_{12} \qquad \overbrace{\overline{(\vec{\rho}_{14})^{T}}}_{12} \qquad \overbrace{\overline{(\vec{\rho}_{54})^{T}}}_{12} \qquad \overbrace{\overline{(\vec{\rho}_{54})^{T}}}_{$

How to estimate the *full state* at each spacecraft in a *decentralized* manner?

SISTEMAS E ROBÓTICA

14/24

GNC for spacecraft formation \rightarrow Navigation

Considering $z = W_x x + W_y y$.

INSTITUTO SUPERIOR TÉCNICO

If Pxy is known \rightarrow Maximum Likehood estimates minimize trace(Pzz). Intersection of the covariance ellipsoids of Pxx and Pyy gives the covariance ellipsoid of the Maximum Likehood estimator. **CI** provides an estimate and a covariance matrix whose ellipsoid encloses the intersection region without previous knowledge of cross-covariance,

GNC for spacecraft formation \rightarrow Navigation

TÉCNICO

→ Filtering with RF local measurements

Measurements from RF $z^{i}(k) = y^{i}(k)$

EKF:

 $\hat{\chi}_{PC}^{i}(k/k+1) = \hat{\chi}_{PC}^{i}(k/k-1) + K^{i}(k)(z^{i}(k) - H^{i}(\hat{\chi}_{PC}^{i}(k/k-1)))$ $S^{i}(k) = H^{i}(k)P^{i}(k/k-1)(H^{i}(k))^{T} + R(k)$ $K^{i}(k) = P^{i}(k/k-1)H^{i}(k)(S^{i}(k))^{-1}$ $P^{i}(k/k+1) = \left(I - K^{i}(k)H^{i}(k)\right)P^{i}(k/k-1)\left(I - K^{i}(k)H^{i}(k)\right)^{T} + K^{i}(k)R^{i}(k)\left(K^{i}(k)\right)^{T}$

\rightarrow Fusion

ıj,

TÉCNICO

INSTITUTO DI SISTEMAS E ROBÓTICA

$w = 1 \hat{\chi}_{PC}^{i} (k / k - 1) = \hat{\chi}_{PC}^{i} (k / k - 1)$ $P^{i} (k / k + 1) = P^{i} (k / k - 1)$	<pre> New measurements from another spacecraft do not change the local</pre>
$w=0 \hat{\chi}_{PC}^{i}(k/k-1) = (P^{i-1}(k/k-1))^{-1} z^{i}(k)$ $P^{i}(k/k+1) = P^{i-1}(k/k-1)$	Locally, the estimates are neglected

EKF fusion

$$\hat{\chi}_{PC}^{i}(k/k+1) = \hat{\chi}_{PC}^{i}(k/k-1) + K^{i}(k)(z^{i}(k)-H^{i})\hat{\chi}_{PC}^{i}(k/k-1))$$
$$P^{i}(k/k+1) = (I - K^{i}(k))P^{i}(k/k-1)(I - K^{i}(k))^{T} + K^{i}(k)R^{i}(k)(K^{i}(k))^{T}$$

 $R^{i} = P^{i-1}$

19/24

Formation Flying – Functional Engineering Simulator (FF-FES)

ı)x

INSTITUTO DE SISTEMAS E ROBÓTICA

Closed Loop Estimation

Navigation with Sensors: RF only

	$\boldsymbol{\chi}(heta_{0})$
$x_{12} = x_2 - x_1[m]$	3000.00
$y_{12} = y_2 - y_1[m]$	300.00
$z_{12} = z_2 - z_1[m]$	-864.00
$x_{32} = x_2 - x_3 [m]$	2875.00
$y_{32} = y_2 - y_3$ [m]	175.00
$z_{32} = z_2 - z_3 [m]$	-3749.00
$x_{13} = x_3 - x_1 [m]$	125.00
$y_{13} = y_3 - y_1$ [m]	125.00
$z_{13} = z_3 - z_1[m]$	2885.00
$\dot{x}_{12} = \dot{x}_2 - \dot{x}_1 [\mathrm{m}/\mathrm{s}]$	-0.04
$\dot{y}_{12} = \dot{y}_2 - \dot{y}_1 [\mathrm{m}/\mathrm{s}]$	-0.04
$\dot{z}_{12} = \dot{z}_2 - \dot{z}_1 [\mathrm{m/s}]$	-0.04
$\dot{x}_{32} = \dot{x}_2 - \dot{x}_3 [\mathrm{m}/\mathrm{s}]$	-0.02
$\dot{y}_{32} = \dot{y}_2 - \dot{y}_3 [\mathrm{m/s}]$	-0.02
$\dot{z}_{32} = \dot{z}_2 - \dot{z}_3 [\mathrm{m/s}]$	-0.06
$\dot{x}_{13} = \dot{x}_3 - \dot{x}_1 [\mathrm{m}/\mathrm{s}]$	-0.02
$\dot{y}_{13} = \dot{y}_3 - \dot{y}_1 [\mathrm{m/s}]$	-0.02
$\dot{z}_{13} = \dot{z}_3 - \dot{z}_1 [\mathrm{m}/\mathrm{s}]$	0.02

SUPERIOR TÉCNICO

RESULTS obtained using DEIMOS' FF-FES simulator

EXAMPLE: 6 hours FAM mode centered around Apogee

INSTITUTO D SISTEMAS E ROBÓTICA

ERROR obtained = 15m for positions, 0.001m/s for velocities

Projection in x-y plane of the optimal relative trajectories in IPQ of s/c_2 (green) and s/c_3 (blue) 22/24

SUPERIOR

TÉCNICO

GNC for spacecraft formation \rightarrow Results for 6h FAM around Apogee

INSTITUTO DI SISTEMAS E ROBÓTICA

Real and estimated relative distances of the y component of s/c_1 w.r.t. x component of s/c_3 .

For estimation only, the error is of order 10⁻⁴ m/s and maximum 10 meters for velocity and position respectively. 23/24

INSTITUTO SUPERIOR TÉCNICO

INSTITUTO DI SISTEMAS E ROBÓTICA

GNC for spacecraft formation → Conclusions

Conclusions

- Guidance and Control: we propose a model-based optimal trajectory planning algorithm.
 - Our guidance-oriented approach consists in regularly re-computing this algorithm.
- This re-planning leads to trajectories that require less control effort during the trajectory tracking phase of the mission.
- Condition to successfully achieve the FAM task: LARGE ENOUGH FAM duration.
- Navigation: the formation state estimation is handled by a fullorder decentralized estimator, based on the CI and EKF.
- The EKF is used for local measurements, and for the measurements communicated by a predecessor spacecraft, in a method with no divergence troubles, i.e., the CI algorithm.