

Stochastic Satisfiability Planning for Multi-Robot Systems

5th ISLab Workshop

Hugo Costelha Institute For Systems and Robotics Instituto Superior Técnico Lisbon, Portugal

Summary

- Motivation
- Planning as SSat
- Application to Robotic Soccer
- Results and Discussion
- Conclusions & Future Work

PÓLO DO I.S.T

ΤΈϹΝΙϹΟ

PÓLO DO I.S.T

Motivation

Done as a project for Algoritmos para Lógica Computacional.

Current (overall) goal

To be able to specify and execute a multi-robot task with predefined quantitative and qualitative properties.

Project goal

Test the applicability of SSat planning to multi-robot systems.

Summary

- Motivation
- Planning as SSat
- Application to Robotic Soccer
- Results and Discussion
- Conclusions & Future Work

PÓLO DO I.S.T

Satisfiability

Finding an assignment in a given boolean formula, in Conjunctive normal form, that makes it True.

 $x = \langle x_1, x_2, \dots, x_n \rangle$

$$\exists x_{1}, \exists x_{2}, \dots, \exists x_{n}, (\phi(x) \Leftrightarrow True)$$

$$Ex.: \phi(x) = (x_1 \lor \bar{x_2} \lor x_4) \land (\bar{x_1} \lor \bar{x_3} \lor x_5) \land (\bar{x_1} \lor \bar{x_3})$$

- → Proposed by Littman in 1997
- New randomized quantifier: \mathfrak{A}^{π}
- Problem is now finding an assignment in a given boolean formula, in CNF, that maximizes the probability of being True.

 $x = \langle x_{1}, x_{2}, \dots, x_{n} \rangle \rightarrow \exists$ (choice variables)

 $y = \langle y_1, y_2, \dots, y_m \rangle \rightarrow \mathfrak{A}^{\pi}$ (chance variables)

 $\exists x_{1} \exists x_{1} \exists x_{2} \exists x_{2} \exists x_{2} \forall^{\pi_{2}} y_{2} \dots \exists x_{n} \exists x_{n}, \forall^{\pi_{m}} y_{m}, (E[\phi(x) \Leftrightarrow True])$

PÓLO DO I.S.T

Hugo Costelha

Solving SSat Problems (1)

PÓLO DO I.S.T

Consider an SSat problem Φ composed by a formula ϕ and quantifier order Q. Let $val(\phi, Q)$ denote the maximum probability of satisfaction of ϕ under ordering Q.

Solving SSat Problems (2)

 $val(\phi, Q)$ is defined recursively using the following rules:

- 1. If ϕ contains an empty clause, then $val(\phi, Q) = 0.0$;
- PÓLO DO LS.T 2. If ϕ contains no clauses, then $val(\phi, Q) = 1.0$;

Hugo Costelha

Solving SSat Problems (3)

PÓLO DO I.S.T

Additionally to these rules we have:

- → Unit propagation
- Pure variable elimination
- Splitting and threshold pruning
- Memoizing

ΤΈϹΝΙϹΟ

Representing Probabilistic Planning Problems

Use of Sequential-effects-tree (ST) representation to describe actions.

ρόιο do i s t

The STs are described textually in a Probabilistic *Planning Language (PPL)* in the following form: a causes π with p if c_1 and ... and c_1

Additional domain specifications (including actionpreconditions) are also specified directly in the PPL file.

Hugo Costelha

Encoding Probabilistic Planning Problems as Ssat Problems -Variables & Clauses-

- All actions and propositions are indexed for all time steps;
- Initial and final conditions;
 - Exactly-one-of actions clauses;
 - One clause for each path in the ST;

Summary

- Motivation
- Planning as SSat
- Application to Robotic Soccer
- Results and Discussion
- Conclusions & Future Work

Application to Robotic Soccer

PÓLO DO I.S.T

- Tested with a 2 player team vs a static opponent;
- Considered impossible to regain the ball possession once captured by the opponent;
 - The goal was to score;
- Started with a complete deterministic case and then extended to the probabilistic case;

The Sensors

→ Robots and ball position (ex.: P1_X_L, P2_Y_C, PÓLODOI.S.T BALL X R);

→Has Ball (for each robot);

The Actions

PÓLO DO I.S.T

- moveN, MoveS, moveE, moveW;
- * takeBallN, takeBallS, takeBallE, takeBallW;
- → pass;
- → score;
- → standBy.

The score Action – deterministic case Sequential-effects-tree

INSTITUTO

SUPERIOR TÉCNICO

The score Action – deterministic case PPL description

PÓLO DO I.S.T

P_score causes -BALL_OPP_GOAL withp 1.0 if -P_X_R P_score causes -BALL_OPP_GOAL withp 1.0 if P_X_R and -P_Y_C P_score causes BALL_OPP_GOAL withp 1.0 if P_X_R and P_Y_C P_score causes -BALL_X_R withp 1.0 if -P_X_R P_score causes BALL_X_R withp 1.0 if P_X_R and -P_Y_C P_score causes -BALL_X_R withp 1.0 if P_X_R and P_Y_C P_score causes -BALL_Y_C withp 1.0 if -P_X_R P_score causes BALL_Y_C withp 1.0 if -P_X_R P_score causes BALL_Y_C withp 1.0 if -P_X_R and P_Y_C

• Pre-conditions:

impossible P_score if -P_HAS_BALL

The score Action – probabilistic case Sequential-effects-tree (1)

Hugo Costelha

The score Action – probabilistic case Sequential-effects-tree (2)

Hugo Costelha

Summary

- Motivation
- Planning as SSat
- Application to Robotic Soccer
- PÓLO DO I.S.T

• Conclusions & Future Work

Results and Discussion

Deterministic Environment Case 1

12/Jan/2006

22

Deterministic Environment Case 1

Deterministic Environment Case 2

Deterministic Environment Case 2

12/Jan/2006

Hugo Costelha

25

Probabilistic Environment

PÓLO DO I.S.T

Probabilistic Environment

Generated plan for 3-steps plan: $\bigvee_{Y \neq Y}$

Probabilistic Environment

Generated plan for 4-steps plan: $\bigvee_{Y \neq Y}$

Probabilistic Environment

Generated plan for 5-steps plan: $\bigvee_{Y \neq Y}$

Probabilistic Environment

Generated plan for 6-steps plan: $\bigvee_{Y \neq Y}$

INSTITUTO SUPERIOR TÉCNICO

Probabilistic Environment

Generated plans:

	Plans								
Steps	3 Steps	4 Steps	5 Steps	6 Steps	7 Steps				
1	P1_mN	P1_mN	P1_mN	P2_mN	P2_mN				
2	P1_mN	P1_mN	P1_mN	P1_mN	P1_mN				
3	P1_s	P1_tBS	P1_tBS	P1_mN	P1_mN				
4	-	P1_s	P1_tBE	P1_tBS	P1_tBS				
5	-	-	P1_s	P1_p	P1_p				
6	-	-	-	P2_s	P2_s				
7a	-	-	-	-	P2_s				
7b	-	-	-	-	Ps_mW				
Probability	0.02	0.04	0.1	0.16	0.17				

Time Statistics - 10000 runs -

Deterministic:

Max.	Mean	Max.	% of	
steps	time [s]	time [s]	runs	
8	10.39	2319.02	100	
7	5.17	242.35	99.77	
6	2.08	39.49	98.39	
5	0.64	8.42	92.13	

Probabilistic:

Number	Min.	Mean	Max.	Mean
of steps	time [s]	time [s]	time	Probability
5	0.55	1.82	11.02	0.16

Action Selection Statistics

Results with 10000 runs:

PÓLO DO I.S.T

Actions [%]												
	Dlavore	StandBy	move			takeBall						
	Flayers		Ν	S	Ε	W	Ν	S	Ε	W	pass	score
D	1	0	10.36	9.94	9.26	7.77	11.69	11.07	24.04	0	10.91	42.03
Γ	2	0	23.41	22.58	22.35	19.34	15.64	14.95	42.53	0	15.86	57.97
n	1	0	53.02	55.17	19.19	70.99	17.47	17.02	41.02	0	19.29	251.36
ע	2	0	68.83	70.07	50.32	283.72	20.77	20.3	62.34	0.01	31.23	273.39

Summary

- Motivation
- Planning as SSat
- Application to Robotic Soccer
- Results and Discussion
 - Conclusions & Future Work

- Although in early stages, SSat planning is already fast enough to be applied in a real-time situation;
 - The generated plans are sequential, but could be applied concurrently;
- Need to address communications and observability issues;
- Use a topological description of the environment;
- Combine Discrete Event Systems for lower level modelling and analysis with these type of higher level planning;

12/Jan/2006

Hugo Costelha

Thanks for your attention!

Encoding Probabilistic Planning Problems as Ssat Problems -Quantifier Ordering-

 c_1 = number of variables it takes to specify a single action step (the number of actions),

 $c_2 =$ number of variables it takes to specify a single observation,

 $c_3 =$ number of state variables (one for each proposition at each time step), and

 c_4 = number of chance variables (one for each possible stochastic outcome at each time step).

Problem Size

		Time Steps					
		1	2	3	4	5	
	#Vars	80	160	240	320	400	
Deterministic	#Clauses	1030	2030	3030	4030	5030	
	#Vars	106	212	318	424	530	
Probabilistic	#Clauses	1182	2334	3486	4638	5790	

