

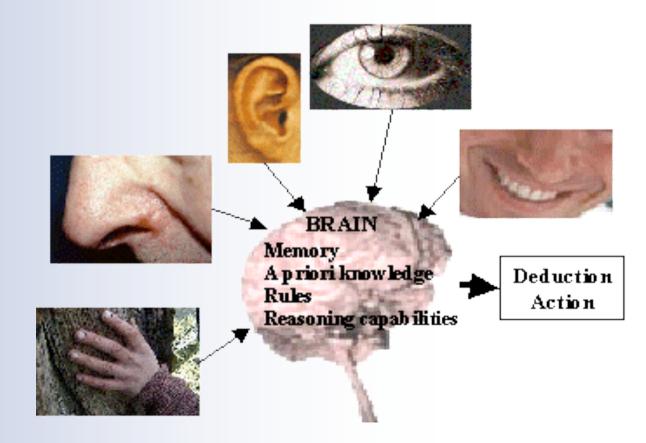
Bayesian Sensor Fusion for Cooperative

Object Localization and World Modeling*

Prepared by: Pedro Pinheiro

- Motivation
- Sensor Fusion Methods
- World Model
- Experimental Setup
- Experimental Results
- Conclusions

- Motivation
- Sensor Fusion Methods
- World Model
- Experimental Setup
- Experimental Results
- Conclusions


- Limitation in environments reconstruction
- Observation errors
- Partial or incomplete information
- Cooperation between the several robots
- Robust and persistent description of the world
- Create more complex and rich behaviors
- Inspire in the biological systems

- Memory
- Experience
- PrioriKnowledge



- Motivation
- Sensor Fusion Methods
- World Model
- Experimental Setup
- Experimental Results
- Conclusions

Sensor Fusion Methods

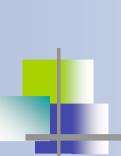
- The sensor fusion is the process of combining data and knowledge of different sources with the goal of maximizing the utility of the information
- The method used depends of the format of the data used by the sensors
- Levels of fusion
 - Pixel level
 - Feature Level
 - High level

"Bayesian Sensor Fusion for Cooperative Object Localization and World Modeling" Sensor Fusion Methods

Pre-processing	Data alignment	Post-processing	
Rect. and elliptical gating	Eucledian, Minkowsky, Manhattan, Mahalanobis	Classical Inference: Maximum a- posteriori, Neyman-Pearson, Minimax, Baye's cost	
Linear and Non-linear PCA	distance metrics		
FFT, Cepstrum, Enveloping, Thresholding	Correlation metrics	Bayesian, Dempster-Shafer, Generalized Evidence	
	Figure of Marit		
Wavelets		Voting, Consensus, Scoring	
Image processing	Least square, Mean square error, Maximum likelihood	Fuzzy logic, Logical templates, Expert systems.	
	Kalman filtering		
	Parametric templates, Clustering,		
	Neural Networks, Voting, Entropy, Image Algebra		



- Motivation
- Sensor Fusion Methods
- World Model
- Experimental Setup
- Experimental Results
- Conclusions

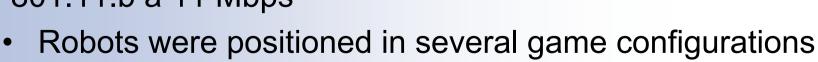


Sensor	Ball	Adve rsa ry	Friendly	Goals	Robot
		Players	Players		Posture
Catadioptric	V	V	V	V	V
System					
Front	V	V	V	V	V
Camera					
Sonars		V	V	V	V
Odometry					V

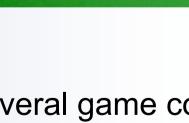
- Build the world model based on several different sources of information
- Detect the greatest number possible of features relevant of the environment

World Model global.worldmodel.* BlackBoard **Local Sensor Fusion Global Sensor Fusion Algorithm Dependency Model Algorithm of Other Robots Dependency Model Local Sensor Fusion Algorithm** local.up.* local.front.* local.odometry.* **BlackBoard** local.sonars.* **Observation and Up Camera Front Camera Sonars Odometry State Model Up Camera Front Camera** Sensors **Sonars Odometry**

- Motivation
- Sensor Fusion Methods
- World Model
- Experimental Setup
- Experimental Results
- Conclusions



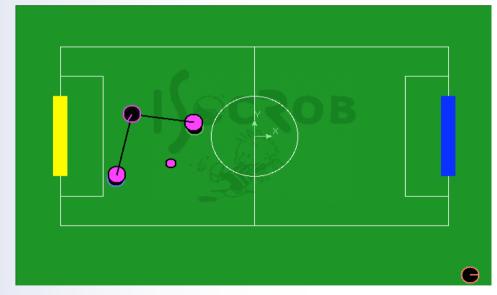
Experimental Setup


- Nomadic Scout **Platform**
- Pentium III 1GHz
- 2 x Philips USB

Webcams

- **Polaroid Sonars**
- Wireless communication 801.11.b a 11 Mbps

- Motivation
- Sensor Fusion Methods
- World Model
- Experimental Setup
- Experimental Results
- Conclusions

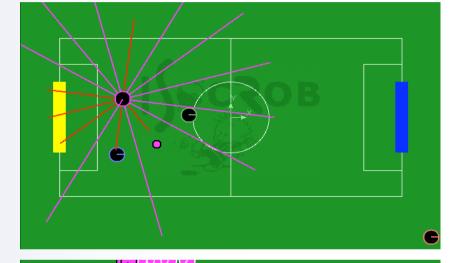


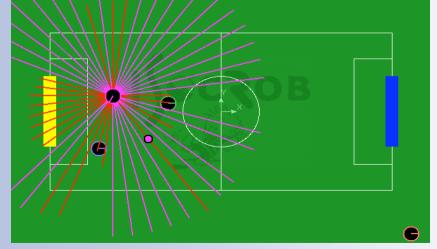
Experimental Results - Opponents

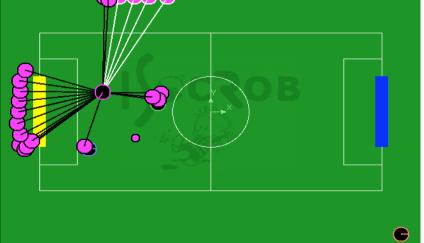
Adversaries and teammates detection

 Posture information of each teammate is transmited to the team

 Try to fuse the local information with the one obtained form the team

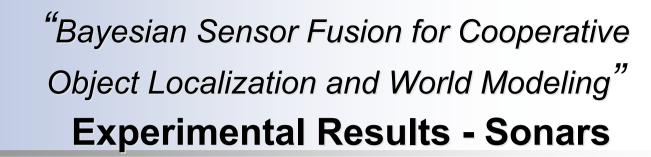


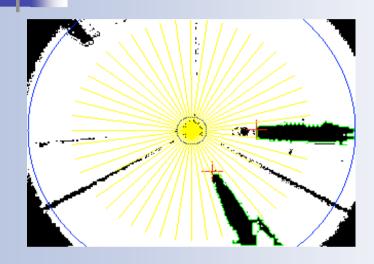


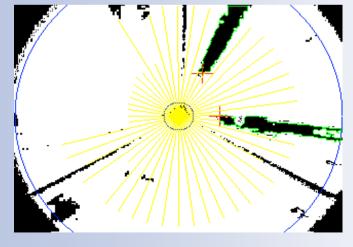


Experimental Results - Sonars

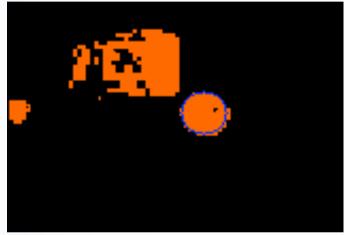
- Real and Virtual Sonar fusioned
- Building the obstacles structure

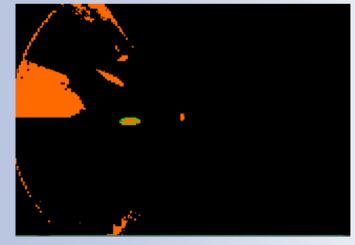






Master Thesis of Pedro Pinheiro


Master Thesis of Pedro Pinheiro


MEIC

"Bayesian Sensor Fusion for Cooperative Object Localization and World Modeling" Experimental Results - Ball

Master Thesis of Pedro Pinheiro

- Motivation
- Sensor Fusion Methods
- World Model
- Experimental Setup
- Experimental Results
- Conclusions

Conclusions

Advantages

- World described in probabilistic terms
- We have a world representation distributed by the team
- More robust to errors and bad observations
- Creation of a world vision from partial and incomplete views of the world
- Possibility of creating new team strategies and more complex behaviors

Disadvantages

- The communication of the world vision of each robot can become and overload to the communications and grows linear for each new member added to the team
- Elements that have a partial view of the a world feature and reach and agreement can make the team go after "bogey man"

