
CLRF - Common LISP
Rescue Framework

A software framework for building RoboCup Rescue agents
in LISP

Introduction

RoboCup is a worldwide organization
that pursues new technology development
Initial goal: building a team of robots that
may win the best human football team in
2050.
Influenced by the Kobe earthquake in
1995, some RoboCup related people
created the RoboCup Rescue competition

Introduction

RoboCup Rescue simulates an earthquake
in a city.
Detailed city map, based on GIS.
Six types of “controllable” agents:

Fire brigades (and fire stations)

Police forces (and police stations)

Ambulance Teams (and ambulance centers)

Introduction

RoboCup Rescue (RR) architecture:

Kernel

Collapse simulator

Blockade simulator

Fire simulator

Misc simulator

Civilian simulator

Traffic simulator

Infrastructure

Fire Brigade
Fire Brigade

Fire Brigade

Ambulance Team
Ambulance Team

Ambulance Team

Police Force
Police Force

Police Force

Gis

Agents

Viewer (2D, 3D, …)

Overview

CLRF is a framework, made in LISP, that
allows a rapid development of RR agents
CLRF comes with all the communication
layer implemented, a flexible world
representation model, and comprehensive
documentation

Overview

CLRF advantages over existing Java
framework:

It’s not in Java!

Thread-based structure

Easy graphical world representation

Very flexible world representation support

Overview

CLRF advantages (cont.):
Automatically updated internal world representation

Command prompt support (allows for the
introduction of LISP commands during agent’s
execution, or even code replacement)

Easy information logging

Why LISP?

LISP Macros are a very powerful feature
that allows the language to extend itself,
using itself to do it!

LISP Macros are not just find/replace operations, but
LISP code that is actually executed

CLOS is a spectacular example of the power of LISP
Macros

Why LISP?

LISP programs may be compiled,
interpreted, or both. You don’t even need
to know if your code is compiled or not
LISP allows the programmer to replace
code in the runtime, reducing tedious fix/
compile/run cycles

Why LISP?

Automatic memory management
Advanced collection types built in the
language itself (not external libraries)
Weak typification – only care about the
variable types when needed
(performance)

Why LISP?

Symbol management (no need to “re-
invent” the symbol type, it’s already
there)
Advanced control structures

CLRF Architecture

core

main

communications

comm-r

comm-s

world model

basic-world-

model

comm-s
comm-s

…

decision

decision

component micro-agent

CLRF Architecture

A microagent is an “intelligent” thread
A microagent knows how to initialize, run
and destroy itself
Each microagent has a message queue for
receiving messages (no blackboard)

CLRF Architecture

Microagent representation:

Micro-agent

Init-function

Run-function

Destroy-function
Message

queue

CLRF Architecture

Improvements over SocRob microagents:
Each microagent is responsible for it’s own data
(approaches OOP paradigm)

Data is represented in a organized way, and not just
a bunch of variables

Each microagent handles data access
synchronization and timing (ex: wait for next cycle)

World Representation

An agent may need different kinds of
world models, each one with a different
level of granularity
Problems:

How to integrate all the world models into the agent

How to keep all the models updated in a coherent
way

How to resolve dependencies between models?

World Representation

Solution: graph of microagents that
controls information flow

Basic World

Representation

Fire Clustering

Representation

Traffic Prediction

Rep.

Fire Propagation

Prediction Rep.

World Representation

World representation micro-agents
register themselves, informing the
framework of their dependencies
When a “sense” message arrives, it’s
“injected” in the graph, on the nodes that
don’t depend on others

World Representation

After processing a message, the micro-
agent asks the framework to forward the
message to the next micro-agent(s) in the
graph
A microagent may safely request
informations from a previous microagent
(it’s updated for sure)

Framework Expansion

Easy to add new sent or received
messages:

(defmethod build-message-data ((msg ak-clear-message))
 (write-value
 (write-value
 (write-value
 (write-header *AK-CLEAR-HEADER*)
 (message-id msg))
 (message-target msg))
 HEADER-NULL))

(defclass ak-clear-message (message)
 ((id :accessor message-id :initarg :id)
 (target :accessor message-target :initarg :target)))

Build an agent in 3 steps

1. Write the “decision” microagent
2. Adjust the message dispatch table
3. Test it!

What CLRF Offers

All the communication code implemented
A strong support for multi-thread
execution, including data representation
and transfer

What CLRF Offers

Flexible world models
Precise documentation
Opportunity to use the best language for
this job – LISP – with minimal effort

Q&A
Miguel Arroz

arroz@guiamac.com

